Respuesta :
Answer: [tex]12.415 rad.s^{-1}[/tex]
Explanation: Angular velocity is the rate of change in angular displacement.
We know that:
Angular velocity, Â Â Â [tex]\omega= \frac{\Delta \theta}{t}[/tex]....................(1)
where:
- t= time
- [tex]\Delta \theta[/tex] = angular displacement in radians
Given that:
- t = 4.10 s
- Δθ = 50.9 radian
Putting the respective values in eq. (1)
[tex]\omega = \frac{50.9}{4.10}[/tex]
[tex]\omega = 12.415 rad.s^{-1}[/tex]
Hi there!
We can use the following rotational equivalent kinematic equation to solve:
[tex]\omega = \frac{\Delta \theta}{\Delta t}[/tex]
ω = angular velocity (rad/sec)
θ = angular displacement (rad)
t = time (sec)
Plug in the given values:
[tex]\omega = \frac{50.9}{4.1} = \boxed{12.41 rad/sec}[/tex]