Find the center of mass of a rod of length L whose mass density changes from one end to the other quadratically. That is, if the rod is laid out along the x-axis with one end at the origin and the other end at x = L, the density is given by rho(x) = rho0 + (rho1 − rho0) x L 2 , where rho0 and rho1 are constant values. (Use the following as necessary: L, rho0, and rho1.)

Respuesta :

Answer:

[tex]x_{cm}[/tex] = ¾ L (ρ₀ + ρ₀) / (2ρ₀ + ρ₁)

Explanation:

The center of mass of a body is defined as

       Rcm =[tex]\frac{1}{M}[/tex]  ∫ r dm

Where the blacks indicate vectors, Rcm is the position of the center of mass, M the total mass of the body, ‘r’ the position with respect to an origin

The density of a body is the relationship between two of its magnitudes that change constantly or vary in a known way, for this case we have

       ρ = m / x

That can also be written in the form

      ρ = dm / dx

      dm = ρ dx

The expression they  give us  is

     ρ₀ = ρ₀ + (ρ₁ -ρ₀) (x/L)²

     dm =( ρ₀ + (ρ₁ -ρ₀) (x/L)² )dx

Replace in the center of mass equation and integrate, from the initial point x = 0 to the upper limit X = L .  Since the whole system is on the x-axis, change the variable r by x (r --- x)

     [tex]x_{cm}[/tex] =  M⁻¹  ∫ x  [ρ₀ + ( ρ₁-ρ₀) (x/L)²] dx

     [tex]x_{cm}[/tex] = M⁻¹  [∫ ρ₀ x dx + I (ρ₁-ρ₀) / L² x³ dx]

     [tex]x_{cm}[/tex] = M⁻¹  [ρ₀ x²/ + (ρ₁ -ρ₀) / L² x⁴/4]

     [tex]x_{cm}[/tex] = M⁻¹ [ρ₀/2 (L2-0) + (ρ₀₁ -ρ₀) /4L² (L⁴-0)

     [tex]x_{cm}[/tex] = M⁻¹ [ρ₀ L²/2 + (ρ₁ -ρ₀)/4  L²]

     [tex]x_{cm}[/tex] = M⁻¹ L² [ρ₀/4 + ρ₁/4]

     [tex]x_{cm}[/tex]= M⁻¹ L²/4 ( ρ₀ +ρ₁)

The only parameter that we don't know explicitly is the total mass, but we can look for their relationship using the concept of density

    M = ∫ dm = ∫ ρ  dx

    M = ∫ [ρ₀ + (ρ₁ -ρ₀)/L²  x²] dx

We integrate and evaluate between the limits of integration x = 0 and x = L

    M = ρ₀ x + (ρ₁ -ρ₀)/L²  x³/3

    M = ρ₀ L + (ρ₁ -ρ₀)/3L²  L³

    M = ρ₀ L + (ρ₁-ρ₀)/3  L

    M = L (ρ₀ + ρ₁/3   -ρ₀/3)

    M = L (2/3 ρ₀ + ρ₁/3)

    M = L/3 (2ρ₀ + ρ₁)

Let's replace and simplify in the center of mass equation we have found

   Xcm = L²/4  [ρ₀ + ρ₁] / [L/3 (2ρ₀ + ρ₀)/L]

  Xcm = ¾ L (ρ₀ + ρ₀) / (2ρ₀ + ρ₁)

The center of mass of the rod with length L = [tex]\frac{3L}{4} [ ( po + po ) / ( 2po + p1 ) ][/tex]

Determine the center of mass of the rod

The density of the rod varies as

p(x) = po + ( p1 - po ) [tex](\frac{x}{L} )^2[/tex]  .  Also

Considering an Infinitesimal element with length dx and mass dm at distance x

dm = p(x) Sdx  

where : S = area of rod.   Hence total mass M = ∫dm

∫dm = [tex]\int\limits^L_o {p(x)} \, sdx[/tex]

Therefore :

[tex]\int\limits^L_o {p(x)} \, sdx = \int\limits^L_opo + [(p1-po)(\frac{x}{L} )^{2} ] \, sdx[/tex]

Resolving the equation above

[tex]\int\limits^L_o {p(x)} \, sdx =[/tex] [tex]SL [ \frac{2po + p1}{3} ][/tex]

Next step : calculate the center of mass

center of mass ( rcm ) =  [tex]\frac{\int\limits^L_o {xdm} \, }{\int\limits^L_o {dm} \, }[/tex]

                                   =  [tex]\frac{\int\limits^L_o {xP(x)} \, sdx }{\int\limits^L_o {p(x)} \, sdx }[/tex]

To find the center of mass solve  [tex]\int\limits^L_o {xp(x)} \, sdx[/tex]

[tex]\int\limits^L_o {xp(x)} \, sdx = S ( po \frac{x^2}{2} + ( p1 (\frac{x^{4} }{4L^2} )- po(\frac{x^4}{4L^2} ) ) )[/tex]

                  = [tex]S ( po \frac{L^2}{2} + ( p1 (\frac{L^{4} }{4L^2} )- po(\frac{L^4}{4L^2} ) ) )[/tex]

                  = [tex]S ( po (\frac{L^2}{4} ) + p1 \frac{L^{2} }{4})[/tex]

Therefore rcm ( center of mass of the rod )

rcm = [tex]L \frac{po(1/4)+ p1 (1/4)}{\frac{2po + p1}{3} }[/tex]  =  [tex]\frac{3L}{4} [ ( po + po ) / ( 2po + p1 ) ][/tex]

Hence we can conclude that the center of mass of a rod of length L is

[tex]\frac{3L}{4} [ ( po + po ) / ( 2po + p1 ) ][/tex]

learn more about center of mass : https://brainly.com/question/874205