Answer:
1. [tex]v_{1f} = v_{1i} - \frac{m_2}{m_1*v_{2f}}[/tex]
2. [tex]v_{1f}=77.875m/s[/tex]
3. [tex]v_f=1.79m/s[/tex]
Explanation:
Use conservation of momentum:
[tex]p_i=p_f[/tex]
[tex]m_1*v_{1i} + m_2*v_{2i} = m_1*v_{1f} + m_2*v_{2f}[/tex]
1.
The expression for the magnitude of the BB's velocity is
v2i = 0 m/s, solve for v1f
[tex]v_{1f} = v_{1i} - \frac{m_2}{m_1*v_{2f}}[/tex]
2.
Now replacing numeric to find the value
[tex]v_{1f} = 99 m/s - \frac{0.65kg}{0.012kg*0.39m/s}[/tex]
[tex]v_{1f}=77.875m/s[/tex]
3.
Now is doesn't exist the box the velocity will be
v1f = v2f = vf
Conservation of Momentum
[tex]p_i=p_f[/tex]
[tex]m_1*v_{1i} = (m_1+m_2)*v_f[/tex]
[tex]v_f = m_1*v_{1i} / (m1+m2)[/tex]
[tex]v_f = \frac{0.012kg * 99 m/s }{(0.012 kg + 0.65 kg)}[/tex]
[tex]v_f=1.79m/s[/tex]