Answer:
Fx= 7242.6 N
Fy= 2751.47 N
Explanation: Â
m=0.145 kg
u= 35 m/s
θ=33°
v=59 m/s
t= 1.69 ms
The change linear momentum in x direction
ΔPx = m ( u + v cosθ)
Now by putting the values
ΔPx = m ( u + v cosθ)
ΔPx = 0.145 ( 35 + 59 cos 33°)
ΔPx =12.24 kg.m/s
The change linear momentum in y direction
ΔPy = m v sinθ
Now by putting the values
ΔPy = m v sinθ
ΔPy = 0.145 x 59 sin 33°)
ΔPy =4.65 kg.m/s
From second law of Newtons
The rate of change of linear momentum is known as force.
[tex]F=\dfrac{dP}{dt}[/tex]
The force in x direction
[tex]F_x=\dfrac{dP_x}{dt}[/tex]
[tex]F_x=\dfrac{12.24}{1.69\times 10^{-3}}[/tex]
Fx= 7242.6 N
The force in y direction
[tex]F_y=\dfrac{dP_y}{dt}[/tex]
[tex]F_y=\dfrac{4.65}{1.69\times 10^{-3}}[/tex]
Fy= 2751.47 N