A random sample of 144 observations has a mean of 20, a median of 21, and a mode of 22. The population standard deviation is known to equal 4.8. The 95.44% confidence interval for the population mean is______?
a. 19.200 to 20.800
b. 18.78 to 20.784
c. 15.2 to 24.8
d. 19.216 to 20.784
e. 21.2 to 22.8

Respuesta :

Answer: a. 19.200 to 20.800

Step-by-step explanation:

Formula to find the confidence interval[tex](\mu)[/tex] :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

, where n is the sample size

[tex]\sigma[/tex] = Population standard deviation.

[tex]\overline{x}[/tex]= Sample mean

[tex]z_{\alpha/2}[/tex] = Two tailed z-value for significance level of [tex]\alpha[/tex].

Given : Confidence level = 95.44% = 0.9544

Significance level = [tex]\alpha=1-0.9544=0.0456[/tex]

Using standard normal z-value table ,

Two tailed z-value for Significance level of 0.0456 :

[tex]z_{\alpha/2}=z_{0.0228}=1.999\approx2[/tex]

Also,

n=144

[tex]\sigma= 4.8[/tex]

[tex]\overline{x}=20[/tex]

Then, the required 95.44% confidence interval for the population mean :-

[tex]20\pm (2)\dfrac{4.8}{\sqrt{144}}\\\\ =20\pm (0.800)\\\\=(20-0.800,\ 20+0.800)=(19.200,\ 20.800)[/tex]

Hence, the 95.44% confidence interval for the population mean is 19.200 to 20.800.