The rectangle below has an area of 6n4 + 20n3 + 14n?.

The width of the rectangle is equal to the greatest common monomial factor of 6n", 20n", and 14n?

What is the length and width of the rectangle?

Length

Width

2013

14n2

Width

Length =

Respuesta :

Answer:

The width of the rectangle is [tex]2n^2[/tex].

The length of the rectangle is [tex]3n^2+10n+7[/tex].

Step-by-step explanation:

Consider the provided information.

The area of rectangle is [tex]6n^4 + 20n^3 + 14n^2[/tex]

It is given that the width of the rectangle is the greatest common factor of [tex]6n^4, 20n^3\ and\ 14n^2[/tex].

First find the greatest common factor of [tex]6n^4, 20n^3\ and\ 14n[/tex]:

[tex]6n^4=2\times3\times n\times n\times n\times n[/tex]

[tex]20n^3=2\times2\times 5\times n\times n\times n[/tex]

[tex]14n^2=2\times7\times n\times n[/tex]

The greatest common factor is: [tex]2n^2[/tex]

Therefore, the width of the rectangle is [tex]2n^2[/tex].

Area of rectangle is: A=LW

Substitute the value of A and W in above formula.

[tex]6n^4 + 20n^3 + 14n=2n^2L\\\\L=\frac{6n^4 + 20n^3 + 14n}{2n^2}\\\\L=3n^2+10n+7[/tex]

Hence, the length of the rectangle is [tex]3n^2+10n+7[/tex]