A length of copper wire carries a current of 14 A, uniformly distributed through its cross section. The wire diameter is 2.5 mm, and its resistance per unit length is 3.3 /km.

a) What is the energy density of the magnetic field at the surface of the wire in J/m^3 ?

b)Of the electric field?

Respuesta :

Answer:

a. ρ[tex]_\beta=1.996J/m^3[/tex]

b. [tex]U_E=9.445x10^{-15} J/m^3[/tex]

Explanation:

a. To find the density of magnetic field given use the gauss law and the equation:

[tex]i=14A[/tex], [tex]d=2.5mm[/tex], [tex]R=3.3[/tex]Ω, [tex]l=1 km[/tex], [tex]E_o=8.85x10^{-12}F/m[/tex], [tex]u_o=4*x10^{-7}H/m[/tex]

ρ[tex]_\beta=\frac{\beta^2}{2*u_o}[/tex]

ρ[tex]_\beta=\frac{1}{2*u_o}*(\frac{u_o*i^2}{2\pi *r})^2[/tex]

ρ[tex]_\beta=\frac{u_o*i^2}{8\pi*r}=\frac{4\pi *10^{-7}H/m*(14A)^2}{8\pi*(1.25x10^{-3}m)^2}[/tex]

ρ[tex]_\beta=1.996J/m^3[/tex]

b. The electric field can be find using the equation:

[tex]U_E=\frac{1}{2}*E_o*E^2[/tex]

[tex]E=(\frac{i*R}{l})^2[/tex]

[tex]U_E=\frac{1}{2}*8.85x10^{-12}*(\frac{14A*3.3}{1000m})^2[/tex]

[tex]U_E=9.445x10^{-15} J/m^3[/tex]