Answer:
42244138.951 m
Explanation:
G = Gravitational constant = 6.667 × 10⁻¹¹ m³/kgs²
r = Radius of orbit from center of earth
M = Mass of Earth = 5.98 × 10²⁴ kg
m = Mass of Satellite
The satellite revolves around the Earth at a constant speed
Speed = Distance / Time
The distance is the perimeter of the orbit
[tex]v=\frac{2\pi \times r}{24\times 3600}[/tex]
The Centripetal force of the satellite is balanced by the universal gravitational force
[tex]m\frac{v^2}{r}=\frac{GMm}{r^2}\\\Rightarrow \frac{\left(\frac{2\pi \times r}{24\times 3600}\right)^2}{r}=\frac{6.667\times 10^{-11}\times 5.98\times 10^{24}}{r^2}\\\Rightarrow \left(\frac{2\pi \times r}{24\times 3600}\right)^2=6.667\times 10^{-11}\times 5.98\times 10^{24}\\\Rightarrow r^3=\frac{6.667\times 10^{-11}\times 5.98\times 10^{24}\times (24\times 3600)^2}{(2\pi)^2}\\\Rightarrow r=\left(\frac{6.667\times 10^{-11}\times 5.98\times 10^{24}\times (24\times 3600)^2}{(2\pi)^2}\right)^{\frac{1}{3}}\\\Rightarrow r=42244138.951\ m[/tex]
The radius as measured from the center of the Earth) of the orbit of a geosynchronous satellite that circles the earth is 42244138.951 m