Respuesta :

The equation of line through given points is:

[tex]y=\frac{4}{3}x+\frac{10}{3}[/tex]

Step-by-step explanation:

Given

(x1,y1) = (2,6)

(x2,y2) = (-4,-2)

Slope-intercept form is:

[tex]y=mx+b[/tex]

We have to find the slope first

[tex]m=\frac{y_2-y_1}{x_2-x_1}\\Putting\ values\\m=\frac{-2-6}{-4-2}\\=\frac{-8}{-6}\\=\frac{4}{3}[/tex]

Putting the value of slope in the equation

[tex]y=\frac{4}{3}x+b[/tex]

To get the value of b, we will put (2,6) in the equation

[tex]6=\frac{4}{3}(2}+b\\6=\frac{8}{3}+b\\b=6-\frac{8}{3}\\b=\frac{18-8}{3}\\b=\frac{10}{3}[/tex]

Putting the values of b and m we get

[tex]y=\frac{4}{3}x+\frac{10}{3}[/tex]

The equation of line through given points is:

[tex]y=\frac{4}{3}x+\frac{10}{3}[/tex]

Keywords: Equation of line, Slope

Learn more about equation of line at:

  • brainly.com/question/4460262
  • brainly.com/question/4464845

#LearnwithBrainly