Answer:
0.0778
Step-by-step explanation:
Probability of false positive result, p = [tex]\frac{1}{125}[/tex] = 0.008
Sample size, n = 15,000
mean, μ = np = 15000 × 0.008 = 120
Now,
Standard deviation, σ = [tex]\sqrt{np(1-p)}[/tex]
or
= Â [tex]\sqrt{15,000\times0.008(1-0.008)}[/tex]
= 10.91
Now,
Probability of there being more than 135 false-positive results
= P(X > 135) ≈ [tex]P(\frac{X-\mu}{\sigma}>\frac{135-120}{10.91})[/tex]
or
= P(z > 1.42)
or
= 1 - P(z ≤ 1.42)
= 1 - 0.9222         [P(z ≤ 1.42) = 0.9222 from standard z table]
= 0.0778
Hence,
P(X > 135) = 0.0778