Answer
given,
mass of bowling ball = 7.25 Kg
moving speed of the bowling ball = 9.85 m/s
mass of bowling in = 0.875 Kg
scattered at an angle = θ = 21.5°
speed after the collision = 10.5 m/s
angle of the bowling ball
[tex]tan \theta_1 = \dfrac{-[m_2v_2Sin \theta_2]}{m_1v_1 - (m_2v_2cos \theta_2)}[/tex]
[tex]tan \theta_1 = \dfrac{-[0.875\times 10.5 \times Sin 21.5^0]}{7.25\times 9.85 - (0.875\times 10.5 \times cos 21.5^0)}[/tex]
[tex]tan \theta_1 = \dfrac{-[3.3672]}{62.86}[/tex]
[tex]tan \theta_1 = 0.0536[/tex]
[tex]\theta_1 =-3.066^0[/tex]
b) magnitude of final velocity
[tex]v = \dfrac{-m_2v_2sin\theta_2}{m_1 sin\theta_1}[/tex]
[tex]v = \dfrac{-0.875 \times 10.5 sin21.5^0}{7.25 sin(-3.066^0)}[/tex]
v = 8.68 m/s