Answer:
EPQ = Â 1982 Â
maximum inventory = Â 1090
average inventory = Â 545
order cycles = Â 44.04
total cost of managing  =  $2180
Explanation:
given data
monthly demand = 900
annual demand = 12 × 900 = 10800
Production averages = 100 units
Holding costs = $2.00
setup cost = $200.00
company operates= 240 days
solution
daily usage = [tex]\frac{10800}{240}[/tex]
daily usage = 45
we find here EPQ
EPQ = [tex]\sqrt{\frac{2*demand*setucost}{holding cost}}[/tex] × [tex]\sqrt{\frac{daily production}{daily production - daily use}}[/tex]  ...........1
EPQ = [tex]\sqrt{\frac{2 * 10800 * 200}{2}}[/tex] × [tex]\sqrt{\frac{100}{100-45}}[/tex]
EPQ = Â 1982 Â
and
maximum inventory = [tex]\frac{Q}{daily production}[/tex] × daily production - daily use
maximum inventory = [tex]\frac{1982}{100}[/tex] × (100-45)
maximum inventory = Â 1090
and
average inventory = [tex]\frac{maximum inventory}{2}[/tex]
average inventory = [tex]\frac{1090}{2}[/tex]
average inventory = Â 545
and
order cycles = Â [tex]\frac{Q}{daily use}[/tex]
order cycles = Â [tex]\frac{1982}{45}[/tex]
order cycles = Â 44.04
and
total cost of managing  = [tex]\frac{maximum inventory}{2}* holding cost + \frac{demand}{Q}*setup cost[/tex]
total cost of managing  = [tex]\frac{1090}{2}* 2 + \frac{10800}{1982}*200[/tex]
total cost of managing  = 2179.81 = $2180