Answer:
It has Infinite Number Solutions.
Step-by-step explanation:
Given:
[tex]\frac{1}{8}-10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8}x=-\frac{1}{8}(59-35x)[/tex]
Solving the equation we get,
[tex]\frac{1}{8}-10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8}x=-\frac{1}{8}(59-35x)[/tex]
Multiplying Both sides by 8 we get,
[tex]8\times[\frac{1}{8}-10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8}x]=8\times-\frac{1}{8}(59-35x)\\\\\frac{8}{8}-80(\frac{3}{4}-\frac{3}{8}x)+\frac{5\times8}{8}x=-\frac{8}{8}(59-35x)\\\\[/tex]
Now solving the above equation we get,
[tex]1-(\frac{80\times3}{4}-\frac{80\times3}{8}x)+5x=-(59-35x)\\\\1-(\frac{240}{4}-\frac{240}{8}x)+5x=-59-35x\\\\1-60+30x+5x= -59+35x\\-59+35x=-59+35x\\-59=-59[/tex]
Hence it has infinite number of Solutions.