A ball of radius r rolls on the inside of a track of radius R. If the ball starts from rest at the vertical edge of the track, find an expression for its speed (using terms g, r, and R) when it reaches the lowest point of the track, rolling without slipping? Do not assume that the ball radius r is small in comparison to the track radius, R.

Respuesta :

Answer:

[tex]v=\sqrt{\dfrac{10g(R-r)}{7}}[/tex]

Explanation:

Given that

Radius of track = R

Radius of ball = r

The ball can be treated as solid sphere, so

The moment of inertia of ball

[tex]I=\dfrac{2}{5}mr^2[/tex]

When the ball reach at the lowest position then it will have both angular and linear speed.

Condition for  rolling without slipping       v= ωr

Form energy conservation

[tex]mgR=mgr+\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega^2[/tex]

 v= ωr

[tex]I=\dfrac{2}{5}mr^2[/tex]

[tex]mgR=mgr+\dfrac{1}{2}mv^2+\dfrac{1}{2}\times \dfrac{2}{5}mr^2\omega^2[/tex]

[tex]mg(R-r)=\dfrac{1}{2}mv^2+\dfrac{1}{2}\times \dfrac{2}{5}mv^2[/tex]

[tex]2mg(R-r)=mv^2+\dfrac{2}{5}mv^2[/tex]

[tex]2g(R-r)=\dfrac{7}{5}v^2[/tex]

[tex]v=\sqrt{\dfrac{10g(R-r)}{7}}[/tex]

Ver imagen Netta00