Respuesta :

Answer:

f(x)=1/4x-3

Step-by-step explanation:

f(x)=4x+12

y=4x+12

--------------

inverse is the opposite

----------------------------------

x=4y+12

4y=x-12

y=(x-12)/4

y=1/4x-12/4

y=1/4x-3

[tex]g(x)=\frac{x}{4}-3[/tex] if g(x) is the inverse of f(x) = 4x+12.

Step-by-step explanation:

Given that,

f(x) = 4x + 12

To find g(x) Let f(x) = y

y = 4x+12

Subtract 12 from both side

y -12 = 4x + 12 - 12

y – 12 = 4x

Solve to find x

[tex]x=\frac{y}{4}-\frac{12}{4}[/tex]

[tex]x=\frac{y}{4}-3[/tex]

We know that from f(x) = y

[tex]x=f^{-1}(y)[/tex]

[tex]f^{-1}(y)=\frac{y}{4}-3[/tex]

From the question we know that g(x) is the inverse of f(x)

Thus [tex]g(x)=\frac{x}{4}-3[/tex] when g(x) is the inverse of f(x)=4x+12.