Respuesta :

The value of g(h(10)) is [tex]2 \sqrt{2}[/tex]

Step-by-step explanation:

Given that,

[tex]g(x)=\sqrt{(x-4)}[/tex] and h(x) = 2x-8

To find g(h(10)) first find h(10) that implies

h(x) = 2x-8

[tex]h(10)=(2 \times 10)-8[/tex]

h(10) = 20 - 8

h(10) = 12

Now,  g(h(10)) = g(12)

[tex]g(x)=\sqrt{(x-4)}[/tex]

[tex]g(12)=\sqrt{(12-4)}[/tex]

[tex]g(12)=\sqrt{8}[/tex]

[tex]\sqrt{8}[/tex] Can be written as [tex]=\sqrt{2 \times 2^{2}}[/tex]

[tex]g(12)=\sqrt{2} \times \sqrt{2^{2}}[/tex]

[tex]g(12)=2 \sqrt{2}[/tex]

[tex]\therefore[/tex][tex]g(h(10))=2 \sqrt{2}[/tex]

Therefore [tex]g(h(10))=2 \sqrt{2}[/tex] for the Given g(x) = root x-4 and h(x) = 2x-8.

Answer:2^*2

Step-by-step explanation: