Respuesta :

Answer:

The numbers are  ( 5 + 2i )  and ( 5 - 2i )

Step-by-step explanation:

Given equation as :

Let The number be x

so, 5 × ( x - 5 )² = - 20

or,  5 × ( x² - 10 x + 25 ) = - 20

or, 5 x² - 50 x + 125 = - 20

or, 5 x² - 50 x + 125 + 20 = 0

Or, 5 x² - 50 x + 145 = 0

Or, x² - 10 x + 29 = 0

Now from quadratic equation

x = [tex]\frac{-b\pm \sqrt{b^{2}- 4\times a\times c}}{2\times a}[/tex]

Or,  x = [tex]\frac{10\pm \sqrt{-10^{2}- 4\times 1\times 29}}{2\times 1}[/tex]

Or,  x = [tex]\frac{10\pm \sqrt{-16}}{2}[/tex]

Or, x = [tex]\frac{10\pm {4i}}{2}[/tex]

∴ x  = ( 5 + 2i )  and ( 5 - 2i )

Hence  The numbers are  ( 5 + 2i )  and ( 5 - 2i )  Answer