Respuesta :

Answer:

Step-by-step explanation:

d

Answer : The correct option is, (A) 30°

Step-by-step explanation :

As we know that:

[tex]\cos 30^o=\frac{\sqrt{3}}{2}[/tex]     ........(1)

According to trigonometric function,

[tex]\cos \theta=\frac{Base}{Hypotenuse}[/tex]     .........(2)

By comparing 1 and 2, we can say that:

[tex]\cos 30^o=\frac{\sqrt{3}}{2}=\frac{Base}{Hypotenuse}[/tex]

Now we have to determine the value of perpendicular by using Pythagoras theorem.

[tex](Hypotenus)^2=(Perpendicular)^2+(Base)^2[/tex]

[tex](2)^2=(Perpendicular)^2+(\sqrt{3})^2[/tex]

[tex]4=(Perpendicular)^2+3[/tex]

[tex](Perpendicular)^2=4-3[/tex]

[tex](Perpendicular)^2=1[/tex]

[tex]Perpendicular=1[/tex]

Now we have to determine the value of [tex]\sin \theta[/tex].

According to trigonometric function,

[tex]\sin \theta=\frac{Perpendicular}{Hypotenuse}[/tex]

[tex]\sin \theta=\frac{1}{2}[/tex]

At [tex]\theta =30^o[/tex]

[tex]\sin 30^o=\frac{1}{2}[/tex]

Hence, the value of [tex]\theta[/tex] is [tex]30^o[/tex]