Respuesta :

Answer:

11. D. All of these

12.

sin30° =[tex]\frac{1}{2}[/tex]

cos 45°=[tex]\frac{1}{\sqrt{2} }[/tex]

cos 30°=[tex]\frac{\sqrt{3} }{2}[/tex]

tan 45°=[tex]1[/tex]

tan 30°=[tex]\frac{1}{\sqrt{3} }[/tex]

13. B tan 60°

Step-by-step explanation:

11.Given,

ABC is a triangle with sides measures as [tex]AB=c , AC=b \ and\ BC=a[/tex]

We have to find the different trigonometric ratio,

We know,

[tex]sin=\frac{opposite}{hypotenuse} \ and\ cos=\frac{adjacent}{hypotenuse}[/tex]

We observe,

[tex]sinA=\frac{a}{c} \\cosB=\frac{a}{c}[/tex]

Therefore both are equal, option (A) is correct!

It is a rule that,

[tex]sin(90-M) = cosM[/tex]

Thus option (B) is correct!

It is a universal proof that ,

[tex]sin^2M+cos^2M=1[/tex]

Thus option (C) is true!

Therefore option (D) is the appropriate choice 'all of these' are correct!

12.

We know,

[tex]sin=\frac{opp}{hyp} \\sin30=\frac{1}{2}[/tex]

We know ,

[tex]cos=\frac{adj}{hyp} \\cos45=\frac{1}{\sqrt{2} }[/tex]

Similarly,

[tex]co30=\frac{\sqrt{3} }{2}[/tex]

We know,

[tex]tan=\frac{opp}{hyp} \\tan=\frac{1}{1} =1[/tex]

Similarly,

[tex]tan30=\frac{1}{\sqrt{3} }[/tex]

13.

We know,

[tex]\frac{sin60}{cos60} =\sqrt{3} \\tan60=\sqrt{3}[/tex]

Therefore B is the correct option!