A series circuit has a 100-Ω resistor, a 0.100-μF capacitor, and a 2.00-mH inductor connected across a 120-V rms ac source operating at 1000/π Hz. What is the rms voltage across the inductor

Respuesta :

Explanation:

It is given that,

Resistance of the resistor, [tex]R=100\ \Omega[/tex]

Capacitance of the capacitor, [tex]C=0.1\ \mu F=0.1\times 10^{-6}\ F[/tex]    

Inductance, [tex]L=2\ mH=2\times 10^{-3}\ H[/tex]

rms value of voltage, [tex]V_{rms}=120\ V[/tex]

The Ac source is operating at, [tex]f=\dfrac{1000}{\pi}\ Hz[/tex]

The inductive reactance of the inductor is given by :

[tex]X_L=\omega L[/tex]

[tex]X_L=2\pi fL[/tex]

[tex]X_L=2\pi \times \dfrac{1000}{\pi}\times 2\times 10^{-3}[/tex]

[tex]X_L=4\ \Omega[/tex]

The rms value of current is :

[tex]I_{rms}=\dfrac{V_{rms}}{R}[/tex]

[tex]I_{rms}=\dfrac{120}{100}[/tex]

[tex]I_{rms}=1.2\ A[/tex]

The rms voltage across the inductor is given by :

[tex]V_L=I_{rms}\times X_L[/tex]

[tex]V_L=1.2\ A\times 4\ \Omega[/tex]

[tex]V_L=4.8\ V[/tex]

So, the voltage across the inductor is 4.8 V. Hence, this is the required solution.