In the Bohr model of the hydrogen atom, an electron (massm=9.1×10−31kg) orbits a proton at a distance of 5.3×10−11m. The proton pulls on the electron with an electric force of 8.2×10−8N. How many revolutions per second does the electron make?

Express your answer with the appropriate units.

Respuesta :

Answer:

[tex]\omega = 6.557 \times 10^{16}\ rev/s[/tex]

Explanation:

GIVEN,

mass of electron =  9.1 x 10 kg

Radius = 5.3 x 10 m

pulling force = 8.2 x 10 N

Required centripetal for (Fe) for circular motion will be provided with electrical force (F)

      [tex]F = m_e\omega^2 r[/tex]

      [tex]\omega = \sqrt{\dfrac{F}{m_e\ r}}[/tex]

      [tex]\omega = \sqrt{\dfrac{8.2 \times 10^{-8}}{9.1 \times 10^{-31}\times 5.3 \times 10^{-11}}}[/tex]

      [tex]\omega = \sqrt{0.17 \times 10^{34}}[/tex]

       ω = 4.12 x 10¹⁶ rad/s

[tex]\omega = \dfrac{4.12 \times 10^{16}}{2\pi}[/tex]

[tex]\omega = 6.557 \times 10^{16}\ rev/s[/tex]

The electron makes 6.56 × 10^15 rev/s.

The electric force between the electrons and protons in an atom is exactly balanced by the centripetal force that keeps the electron moving along a circular path in the Bohr atom .

Felectric = F centripetal

Recall that centripetal force(F) = mv^2/r

v = rω

F= m(rω)^2/r

F =mr^2ω^2/r

F = mrω^2

ω = √F/mr

ω = √8.2×10^−8 N/9.1×10^−31 kg × 5.3×10^−11 m

ω =  4.123 ×10^16 rad/s

If 1 rev/s = 2π rad/s

x rev/s =  4.123 ×10^16 rad/s

x = 6.56 × 10^15  rev/s

Learn more: https://brainly.com/question/4147359