A rotating wheel requires 2.90-s to rotate through 37.0 revolutions. Its angular speed at the end of the 2.90-s interval is 97.2 rad/s. What is the constant angular acceleration of the wheel?

Respuesta :

Answer:

Angular acceleration, [tex]\alpha =20.32\ rad/s^2[/tex]

Explanation:

It is given that,

Displacement of the rotating wheel, [tex]\theta=37\ rev=232.47\ radian[/tex]

Time taken, t = 2.9 s

Initial speed of the wheel, [tex]\omega_i=0[/tex]

Final speed of the wheel, [tex]\omega_f=97.2\ rad/s[/tex]

Let [tex]\alpha[/tex] is the angular acceleration of the wheel. Using the third equation of kinematics to find it as :

[tex]\alpha=\dfrac{\omega_f^2-\omega_i^2}{2\theta}[/tex]

[tex]\alpha=\dfrac{(97.2)^2}{2\times 232.47}[/tex]

[tex]\alpha =20.32\ rad/s^2[/tex]

So, the angular acceleration of the wheel is [tex]20.32\ rad/s^2[/tex]. Hence, this is the required solution.