Un carro de juguete da vueltas en una pista circular de 45 cm de diametro si emplea 0,5 s en realizar una vuelta dteemina

Respuesta :

Answers:

The complete question in english is written below:

A toy car spins on a circular track 45 cm in diameter. If it uses 0.5 seconds to make a complete circle, determine:

a- period and frequency in one circle

b-the distance it travels around the circular path

c-linear velocity

d-angular velocity

e-centripetal acceleration

a- period and frequency in one circle

According to the given information the period is [tex]T=0. 5s[/tex] and since the frequency [tex]f[/tex] is the inverse of the period, we have:

[tex]f=\frac{1}{T}=\frac{1}{0.5 s}[/tex]

[tex]f=2 Hz[/tex]

b-the distance it travels around the circular path

Here we have to calculate the perimeter [tex]P[/tex] of the circular path:

[tex]P=\pi D[/tex]

Where [tex]D=45 cm=0.45 m[/tex] is the diameter

[tex]P=\pi (0.45 m)=1.413 m[/tex]

c-linear velocity

We can calculate the linear velocity [tex]V[/tex] by:

[tex]V=\frac{P}{T}=\frac{1.413 m}{0.5 s}[/tex]

[tex]V=2.82 m/s[/tex]

d-angular velocity

Angular velocity [tex]\omega[/tex] is given by:

[tex]\omega=2 \pi f[/tex]

[tex]\omega=2 \pi (2 Hz)[/tex]

[tex]\omega=12.56 rad/s[/tex]

e-centripetal acceleration

Centripetal acceleration [tex]a_{c}[/tex] is given by:

[tex]a_{c}=\frac{V^{2}}{r}[/tex]

[tex]a_{c}=\frac{(2.82 m/s)^{2}}{0.225 m}[/tex]

[tex]a_{c}=35.34 m/s^{2}[/tex]