Unpolarized light is incident upon two ideal polarizing filters that do not have their transmission axes aligned. If 19% of the light passes through this combination, what is the angle between the transmission axes of the two filters?

Respuesta :

Answer:

51.94°

Explanation:

[tex]I_0[/tex] = Unpolarized light

[tex]I_2[/tex] = Light after passing though second filter = [tex]0.19I_0[/tex]

Polarized light passing through first filter

[tex]I_1=\frac{I_0}{2}[/tex]

Polarized light passing through second filter

[tex]I_2=\frac{I_0}{2}cos^2\theta\\\Rightarrow 0.19I_0=\frac{I_0}{2}cos^2\theta\\\Rightarrow cos^2\theta=\frac{0.19I_0}{\frac{I_0}{2}}\\\Rightarrow cos\theta=\sqrt{\frac{0.19I_0}{\frac{I_0}{2}}}\\\Rightarrow \theta=cos^{-1}\sqrt{\frac{0.19I_0}{\frac{I_0}{2}}}\\\Rightarrow \theta=cos^{-1}\sqrt{0.19\times 2}\\\Rightarrow \theta=cos^{-1}\sqrt{0.38}\\\Rightarrow \theta=51.94^{\circ}[/tex]

The angle between the two filters is 51.94°