A golfer hits a ball at an angle of 12 degrees above horizontal. The velocity of the ball is 37 m/s. What is the horizontal distance the ball travels in 2 seconds? A. 9.6 m B. 36 m C. 72 m D. 74 m

Respuesta :

72 m is the horizontal distance the ball travels in 2 seconds.

Answer: Option C

Explanation:

Velocity is defined as the distance travelled per unit time and expressed in m/s. The mathematical expression can be given as follows,

                             [tex]\text {velocity}=\frac{d i s t a n c e}{t i m e}[/tex]

Now, the given datas are,

Angle made with the horizontal= 12 degrees

Velocity with which the ball was hit= 37 m/s

Time travelled= 2 s

The range ‘x’ of the horizontal component’s velocity can be calculated by,

                    [tex]\text { Horizontal distance travelled }=\text { Horizontal velocity } \times \text { Time }[/tex]

                                     [tex]x=v_{x 0} \times t[/tex]

So, horizontal component of velocity,

                         [tex]v_{x 0}=v \cos \theta=37 \times \cos 12=37 \times 0.978=36.186 \mathrm{m} / \mathrm{s}[/tex]

Now, horizontal distance travelled can be measured as,

                         [tex]x = 36.186 \times 2 = 72.372 m[/tex]

The value gets rounded off and the horizontal travelled distance as 72 m.