Respuesta :
Answer:
a) See annex
b) See annex
x = 0,5 ft
y = 2 ft and
V = 2 ft³
Step-by-step explanation: See annex
c) V = y*y*x
d-1) y = 3 - 2x
d-2) V = (3-2x)* ( 3-2x)* x ⇒ V = (3-2x)²*x
V(x) =( 9 + 4x² - 12x )*x ⇒ V(x) = 9x + 4x³ - 12x²
Taking derivatives
V¨(x) = 9 + 12x² - 24x
V¨(x) = 0 ⇒ 12x² -24x +9 = 0 ⇒ 4x² - 8x + 3 = 0
Solving for x (second degree equation)
x =[ -b ± √b²- 4ac ] / 2a
we get x₁ = 1,5 and x₂ = 0,5
We look at y = 3 - 2x and see that the value x₂ is the only valid root
then
x = 0,5 ft
y = 2 ft and
V = 0,5*2*2
V = 2 ft³
The volume of a box is the amount of space in the box
- The expression of volume in terms of x and y is [tex]V = x y^2[/tex].
- The relationship between x and y is [tex]y = 3 - 2x[/tex],
- Volume as a function of x is: [tex]V(x) =x \times (3 - 2x)^2[/tex].
- The dimension that maximize the volume is: [tex]x = \frac 12[/tex] and [tex]y = 2[/tex]
(c) Expression for volume
The volume (V) of the box is:
[tex]V = x \times y \times y[/tex]
[tex]V = x y^2[/tex]
(d) Relationship between x and y
The length of the box is given as:
[tex]Length = 3[/tex]
The side of the box is constructed from the original square piece.
This means that:
[tex]y = Length - 2 \times x[/tex]
So, we have:
[tex]y = 3 - 2 \times x[/tex]
[tex]y = 3 - 2x[/tex]
(e) Volume as a function of x
In (c), we have:
[tex]V = x y^2[/tex]
Substitute [tex]y = 3 - 2x[/tex]
[tex]V =x \times (3 - 2x)^2[/tex]
So, we have:
[tex]V(x) =x \times (3 - 2x)^2[/tex]
(f) The largest dimension of the box
In (e), we have:
[tex]V(x) =x \times (3 - 2x)^2[/tex]
Expand
[tex]V(x) =x \times (9 - 12x + 4x^2)[/tex]
[tex]V(x) =9x - 12x^2 + 4x^3[/tex]
Differentiate
[tex]V'(x) =9 - 24x + 12x^2[/tex]
Equate to 0
[tex]9 - 24x + 12x^2 = 0[/tex]
Divide through by 3
[tex]3 - 8x + 4x^2 = 0[/tex]
Rewrite as:
[tex]4x^2 - 8x +3 = 0[/tex]
Expand
[tex]4x^2 - 6x - 2x +3 = 0[/tex]
Factorize
[tex]2x(2x - 3) -1( 2x -3 ) = 0[/tex]
Factor out 2x - 3
[tex](2x - 1) ( 2x -3 ) = 0[/tex]
Split
[tex]2x - 1 = 0\ or\ 2x -3 = 0[/tex]
Solve for x
[tex]2x = 1 \ or\ 2x =3[/tex]
Divide by 2
[tex]x = \frac12 \ or\ x =\frac 32[/tex]
Recall that:
[tex]y = 3 - 2x[/tex]
When [tex]x = \frac 12[/tex]
[tex]y = 3 - 2 \times \frac 12[/tex]
[tex]y = 2[/tex]
When [tex]x = \frac 32[/tex]
[tex]y = 3 - 2 \times \frac 32[/tex]
[tex]y = 0[/tex]
[tex]y = 0[/tex] is not a feasible solution
So, the dimensions that maximize the volume are:
[tex]x = \frac 12[/tex] and [tex]y = 2[/tex]
Read more about volumes at:
https://brainly.com/question/9867748