Respuesta :
Answer:
a) [tex]P(80\leq X \leq 120)=0.9957[/tex]
b) [tex]P(X < 90)=0.0793[/tex]
c) [tex]P(X < 85)UP(X>115)=0.034[/tex]
d)[tex]P(X = 100)=0[/tex]
Step-by-step explanation:
1) Notation and data given
n= 200 represent the total tosses
p(head)=p(tails)=1/2=0.5 if is a fair coin
The experiment on this case is tossing 200 times a coin
We can calculate np=200*0.5=100>10 and nq=n(1-p)=200*(1-0.5)=100>10
So then since np>10 and nq>10 we can use the approximation normal to the binomial distribution.
Let X our random variable who represents "the number of heads obtained in 200 tosses from a fair coin". This random variable X follows a normal distribution. And since we have all the conditions satisfied we can calculate the mean and the deviation for the normal distribution
[tex]\mu=np=200*0.5=100[/tex]
[tex]\sigma=\sqrt{npq}=\sqrt{200*0.5*(1-0.5)}=5\sqrt{2}[/tex]
Since X follows a normal distribution we can standarize on this way
[tex]z=\frac{X-\mu}{\sqrt{npq}}[/tex]
And z is distributed normal with mean= and deviation =1.
This z score would be useful in order to calculate the probabilities required.
2) Part a
[tex]P(80\leq X \leq 120)=P(\frac{80-100}{5\sqrt{2}}\leq z \leq \frac{120-100}{5\sqrt{2}})=P(-2.83 \leq z \leq 2.83)[/tex]
Using properties from the normal distribution we have this
[tex]P(-2.83 \leq z \leq 2.83)=P(z\leq 2.83)-P(Z\leq -2.83)=0.998-0.00233=0.9957[/tex]
3) Part b
[tex]P(X<90)=P(z < \frac{90-100}{5\sqrt{2}})=P(z<-1.41)[/tex]
And using a the normal standard distribution table or excel we find that:
[tex]P(z<-1.41)=0.0793[/tex]
4) Part c
Since the events [tex]P(X<85)[/tex] and [tex]P(X>115)[/tex] are independent, so we can find the probability like this[tex]P(X<85)UP(X>115)=P(X<85)+P(X>115)[/tex]
So we can find individually the probabilities like this:
[tex]P(X<85)=P(z < \frac{85-100}{5\sqrt{2}})=P(z<-2.12)=0.017[/tex]
[tex]P(X115)=P(z > \frac{115-100}{5\sqrt{2}})=P(z>2.12)=0.017[/tex]
So then:
[tex]P(X<85)UP(X>115)=P(X<85)+P(X>115)=0.017+0.017=0.034[/tex]
5) Part d
If we use the normal approximation since the area below the curve for a point is not defined. Then the probability P(X=100) would be 0.