Out of 23, 5 people can be selected in 33649 ways
Step-by-step explanation:
The combinations are used to find the number of ways when the selection doesn't require any order.
Combination is solved as:
[tex]C(n,r)=\frac{n!}{r!(n-r)!}[/tex]
Here,
n= 23
r=5
Putting the values
[tex]C(n,r)=\frac{23!}{5!(23-5)!}\\=\frac{23!}{5!*18!}\\=33649\ ways[/tex]
Out of 23, 5 people can be selected in 33649 ways
Keywords: Combinations, Permutations
Learn more about combinations at:
#LearnwithBrainly