contestada

If a cup of coffee has temperature 95∘C95∘C in a room where the temperature is 20∘C,20∘C, then, according to Newton's Law of Cooling, the temperature of the coffee after tt minutes is T(t)=20+75e−t/50. T(t)=20+75e−t/50. What is the average temperature (in degrees Celsius) of the coffee during the first half hour?

Respuesta :

Answer:

T = 76.39°C

Explanation:

given,

coffee cup temperature = 95°C

Room temperature= 20°C

expression

[tex]T( t ) = 20 + 75 e^{\dfrac{-t}{50}}[/tex]

temperature at t = 0

[tex]T( 0 ) = 20 + 75 e^{\dfrac{-0}{50}}[/tex]

T(0) = 95°C

temperature after half hour of cooling

[tex]T( t ) = 20 + 75 e^{\dfrac{-t}{50}}[/tex]

t = 30 minutes

[tex]T( 30 ) = 20 + 75 e^{\dfrac{-30}{50}}[/tex]

[tex]T( 30 ) = 20 + 75 \times 0.5488[/tex]

T(30) = 61.16° C

average of first half hour will be equal to

[tex]T = \dfrac{1}{30-0}\int_0^30(20 + 75 e^{\dfrac{-t}{50}})\ dt[/tex]

[tex]T = \dfrac{1}{30}[(20t - \dfrac{75 e^{\dfrac{-t}{50}}}{\dfrac{1}{50}})]_0^30[/tex]

[tex]T = \dfrac{1}{30}[(20t - 3750e^{\dfrac{-t}{50}}]_0^30[/tex]

[tex]T = \dfrac{1}{30}[(20\times 30 - 3750 e^{\dfrac{-30}{50}} + 3750][/tex]

[tex]T = \dfrac{1}{30}[600 - 2058.04 + 3750][/tex]

T = 76.39°C

Otras preguntas