Th e enzyme-catalyzed conversion of a substrate at 25°C has a Michaelis constant of 0.045 mol dm−3. Th e rate of the reaction is 1.15 mmol dm−3 s−1 when the substrate concentration is 0.110 mol dm−3. What is the maximum velocity of this reaction?

Respuesta :

Answer:

[tex] 1.620\times 10^{-3} mol/dm^3 s[/tex]is the maximum velocity of this reaction.

Explanation:

Michaelis–Menten 's equation:

[tex]v=V_{max}\times \frac{[S]}{K_m+[S]}=k_{cat}[E_o]\times \frac{[S]}{K_m+[S]}[/tex]

[tex]V_{max}=k_{cat}[E_o][/tex]

v = rate of formation of products =

[S] = Concatenation of substrate

[tex][K_m][/tex] = Michaelis constant

[tex]V_{max}[/tex] = Maximum rate achieved

[tex]k_{cat}[/tex] = Catalytic rate of the system

[tex][E_o][/tex] = Initial concentration of enzyme

We have :

[tex]K_m=0.045 mol/dm^3[/tex]

[tex]v=1.15 mmol/dm^3 s=1.15\times 10^{-3} mol/dm^3 s[/tex]

[tex][S]=0.110 mol/dm^3[/tex]

[tex]v=V_{max}\times \frac{[S]}{K_m+[S]}[/tex]

[tex]1.15\times 10^{-3} mol/dm^3 s=V_{max}\times \frac{0.110 mol/dm^3}{[(0.045 mol/dm^3)+(0.110 mol/dm^3)]}[/tex]

[tex]V_{max}=\frac{1.15\times 10^{-3} mol/dm^3 s\times [(0.045 mol/dm^3)+(0.110 mol/dm^3)]}{0.110 mol/dm^3}=1.620\times 10^{-3} mol/dm^3 s[/tex]

[tex] 1.620\times 10^{-3} mol/dm^3 s[/tex]is the maximum velocity of this reaction.