Answer:
[tex] 1.620\times 10^{-3} mol/dm^3 s[/tex]is the maximum velocity of this reaction.
Explanation:
Michaelis–Menten 's equation:
[tex]v=V_{max}\times \frac{[S]}{K_m+[S]}=k_{cat}[E_o]\times \frac{[S]}{K_m+[S]}[/tex]
[tex]V_{max}=k_{cat}[E_o][/tex]
v = rate of formation of products =
[S] = Concatenation of substrate
[tex][K_m][/tex] = Michaelis constant
[tex]V_{max}[/tex] = Maximum rate achieved
[tex]k_{cat}[/tex] = Catalytic rate of the system
[tex][E_o][/tex] = Initial concentration of enzyme
We have :
[tex]K_m=0.045 mol/dm^3[/tex]
[tex]v=1.15 mmol/dm^3 s=1.15\times 10^{-3} mol/dm^3 s[/tex]
[tex][S]=0.110 mol/dm^3[/tex]
[tex]v=V_{max}\times \frac{[S]}{K_m+[S]}[/tex]
[tex]1.15\times 10^{-3} mol/dm^3 s=V_{max}\times \frac{0.110 mol/dm^3}{[(0.045 mol/dm^3)+(0.110 mol/dm^3)]}[/tex]
[tex]V_{max}=\frac{1.15\times 10^{-3} mol/dm^3 s\times [(0.045 mol/dm^3)+(0.110 mol/dm^3)]}{0.110 mol/dm^3}=1.620\times 10^{-3} mol/dm^3 s[/tex]
[tex] 1.620\times 10^{-3} mol/dm^3 s[/tex]is the maximum velocity of this reaction.