Explanation:
Let [tex]I[/tex] be the moment of inertia.
Let [tex]k[/tex] be the radius of gyration
Let [tex]m[/tex] be the mass of the ball.
Then,it takes time proportional to [tex]\frac{I}{mr^{2}}[/tex].
Moment of inertia of a solid sphere is given by [tex]\frac{2}{5}mr^{2}[/tex]
Ball 1:
[tex]m=M[/tex]
[tex]r=R[/tex]
[tex]I=\frac{2}{5}MR^{2}[/tex]
So,time is proportional to [tex]\frac{\frac{2}{5}MR^{2} }{MR^{2}}=\frac{2}{5}[/tex]
Ball 2:
[tex]m=8M[/tex]
[tex]r=2R[/tex]
[tex]I=\frac{2}{5}(8M)(2R)^{2}[/tex]=[tex]\frac{64}{5}MR^{2}[/tex].
So,time is proportional to [tex]\frac{\frac{64}{5}MR^{2} }{(8M)(2R)^{2}}=\frac{}{}=\frac{2}{5}[/tex]
So,both arrive at the same time.