Respuesta :
Answer:
a) Â [tex]k_{e}[/tex] = 928 J , b)U = -62.7 J , c) K = 0 , d) Y = 11.0367 m, Â e) Â v = 15.23 m / s Â
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
   [tex]k_{e}[/tex] = ½ k x²
   [tex]k_{e}[/tex] = ½ 2900 0.80²
   [tex]k_{e}[/tex] = 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
   U = m h and
   U = 8 9.8 (-0.80)
   U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
   K = ½ m v²
   K = 0
d) write the energy at two points, maximum compression and maximum height
   Em₀ = ke = ½ m x²
   [tex]E_{mf}[/tex] = mg y
   Emo = [tex]E_{mf}[/tex]
   ½ k x² = m g y
   y = ½ k x² / m g
   y = ½ 2900 0.8² / (8 9.8)
   y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
   Y = y- 0.80
   Y = 11.8367 -0.80
   Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
   Emo = ½ k x² = 928 J
   [tex]E_{mf}[/tex]= ½ m v²
   Emo = [tex]E_{mf}[/tex]
   Emo = ½ m v²
   v =√ 2Emo / m
   v = √ (2 928/8)
   v = 15.23 m / s