Answer:
[ 17.8941, 19.6621]
Step-by-step explanation:
Given:
widths :
18.41 19.11 18.67 18.97 21.97 17.26 18.69 16.73 21.97 16.43 21.97 21.66 18.77 17.93 15.47 16.44
Total number of observations = 16
Mean of the sample = [tex]\frac{\textup{Sum of observations}}{\textup{Total number of observations}}[/tex]
= [tex]\frac{\textup{300.45}}{\textup{16}}[/tex]
= 18.7781
For 90% confidence level, z value = 1.645
Therefore,
Margin of error, E = [tex]z\frac{\sigma}{\sqrt n}[/tex]
= [tex]1.645\times\frac{2.15}{\sqrt{16}}[/tex]
= 0.884
thus,
Confidence interval = Mean ± E
or
Confidence interval = [18.7781 - 0.884 , 18.7781 + 0.884 ]
= [ 17.8941, 19.6621]