Respuesta :
Answer:
[tex]\omega = 128.300 rad/sec[/tex]
H = 19.92 m
Explanation:
Given data:
weight of flywheel 1500 kg
disk radius is 0.6 m
total mass of bus is 10,000 kg
Kinetci energy of wheel is given as
[tex]K.E = \frac{1}{2} I\omega^2[/tex]
where
I denotes moment of inertia [tex]= \frac{Mr^2}{2}[/tex]
[tex]\omega[/tex] is angular velocity
from information given in question 90% of K.E( flywheel) = K.E of bus
K.E of bus [tex]= \frac{1}{2} m v^2[/tex]
[tex]0.9 \frac{1}{2} I\omega^2 = \frac{1}{2} m v^2[/tex]
substituing all value in above equation
[tex]I = = \frac{Mr^2}{2}[/tex]
HERE M = 1500 kg and r = 0 , so
[tex]0.9\frac{1}{2} \frac{1500\times 0.6^2}{2} \times \omega^2 = \frac{1}{2} 10,000 \times 20^2[/tex]
solving for angular velocity
[tex]\omega = 128.300 rad/sec[/tex]
part b
by energy conservation theorem
[tex]E_i =E_f[/tex]
0.90 Kr = Ke + Ue
[tex]0.9( \frac{1}{2} I\omega^2) = \frac{1}{2} m v^2[ + MgH[/tex]
[tex]0.9\frac{1}{2} \frac{1500\times 0.6^2}{2} \times 128.3^2 = \frac{1}{2} 10,000 \times 3^2 + 10000 \times 9.81\times H[/tex]
solving for H
H = 19.92 m
The angular velocity that the flywheel must have to contain enough energy to take the bus from rest is equal to 128.30 rad/s.
Given the following data:
Weight of flywheel = 1500 kg.
Radius of disk = 0.6 m.
Total mass of bus = 10,000 kg.
Speed = 20.0 m/s.
Percent of KE = 90.0% = 0.9.
How to calculate the angular velocity.
Mathematically, the rotational kinetic energy is given by this formula:
[tex]K.E_{rot}=\frac{1}{2} I \omega^2\\\\K.E_{rot}=\frac{1}{2} (\frac{mr^2}{2} ) \omega^2\\\\\frac{0.9mr^2}{4} \omega^2=\frac{1}{2} Mv^2\\\\\omega =\sqrt{\frac{4Mv^2}{1.8mr^2}} \\\\\omega =\sqrt{\frac{4 \times 10000 \times 20^2}{1.8 \times 1500 \times 0.6^2}} \\\\\omega =\sqrt{\frac{16000000}{972}}\\\\\omega =128.30\;rad/s[/tex]
How to calculate the height.
In order to determine the height of the hill, we would apply the law of conservation of energy:
[tex]E_i=E_f\\\\\frac{0.9mr^2}{4} \omega^2=\frac{1}{2} Mv^2+Mgh\\\\0.9mr^2 \omega^2=2Mv^2+Mgh\\\\Mgh=0.9mr^2 \omega^2-2Mv^2\\\\h=\frac{0.9mr^2 \omega^2-2Mv^2}{Mg} \\\\h=\frac{0.9\times 1500 \times 0.6^2 \times 128.30^2-2\times 10000 \times 20.0^2}{10000 \times 9.8}[/tex]
Height, h = 19.92 meters.
Read more on kinetic energy here: brainly.com/question/1242059