Light no. 10 oil is heated from 95°F to 105°F in a 0.6 in inside diameter tube. The average velocity of the oil is 2.0 ft/sec. The viscosity of the oil at 100°F is 45 centistokes (cS). What is the Reynolds number inside the tube?

Respuesta :

Answer:

Re = 2.0645

Explanation:

considering pipe with oil flow from 95 degree F to 105 degree F

Average velocity is 2.0 ft./sec

viscosity of oil at 00 degree F is 45 centistoke

[tex]\nu = 45 centi stoke[/tex]

[tex]\nu = 45\times 10^{-4} m^2/s[/tex]

d = 0.6 inch = 0.1524 m

v = 2 ft/sec = 0.609 m/s

Reynold number [tex]= \frac{inertia\ force}{viscous\ force}[/tex]

                           [tex]= \frac{\rho vd}{\mu}[/tex]

                          [tex] = \frac{v d}{\nu}[/tex]

                           [tex]= \frac{ 0.9096 \times 0.1524}{45\times 10^{-4}}[/tex]

                 Re = 2.0645

Answer:

Re=203.2

Explanation:

Given that

d= 0.6 in

1 in = 0.0254 m

d= 0.01524 m

u= 2 ft/s

1 ft/s = 0.30 m/s

u= 0.60 m/s

kinetic viscosity ν = 45 Centistokes

1 Centistokes = 10⁻⁶ m²/s

ν = 45 x 10⁻⁶ m²/s

We know that Reynolds number given as

[tex]Re=\dfrac{ud}{\nu }[/tex]

Now by putting the values

[tex]Re=\dfrac{ud}{\nu }[/tex]

[tex]Re=\dfrac{0.6\times 0.01524}{45\times 10^{-6}}[/tex]

Re=203.2

This is the Reynolds number inside tube.