Respuesta :

Answer:

[tex]a=10\sqrt{3}\ units[/tex],[tex]b=5\sqrt{3}\ units[/tex],[tex]c=15\ units[/tex],[tex]d=5\ units[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

step 1

Find the value of b

In the right triangle BCD

[tex]sin(60\°)=\frac{b}{10}[/tex]

[tex]b=sin(60\°)(10)[/tex]

Remember that

[tex]sin(60\°)=\frac{\sqrt{3}}{2}[/tex]

so

[tex]b=\frac{\sqrt{3}}{2}(10)[/tex]

[tex]b=5\sqrt{3}\ units[/tex]

step 2

Find the value of d

In the right triangle BCD

[tex]cos(60\°)=\frac{d}{10}[/tex]

[tex]d=cos(60\°)(10)[/tex]

Remember that

[tex]cos(60\°)=\frac{1}{2}[/tex]

so

[tex]d=\frac{1}{2}(10)[/tex]

[tex]d=5\ units[/tex]

step 3

Find the value of a

In the right triangle ABD

[tex]sin(30\°)=\frac{b}{a}[/tex]

[tex]a=\frac{b}{sin(30\°)}[/tex]

Remember that

[tex]sin(30\°)=\frac{1}{2}[/tex]

[tex]b=5\sqrt{3}\ units[/tex]

so

[tex]a=\frac{5\sqrt{3}}{(1/2)}[/tex]

[tex]a=10\sqrt{3}\ units[/tex]

step 4

Find the value of c

In the right triangle ABD

[tex]cos(30\°)=\frac{c}{a}[/tex]

[tex]c=(a)cos(30\°)[/tex]

Remember that

[tex]cos(30\°)=\frac{\sqrt{3}}{2}[/tex]

[tex]a=10\sqrt{3}\ units[/tex]

substitute

[tex]c=(10\sqrt{3})\frac{\sqrt{3}}{2}[/tex]

[tex]c=15\ units[/tex]

therefore

[tex]a=10\sqrt{3}\ units[/tex]

[tex]b=5\sqrt{3}\ units[/tex]

[tex]c=15\ units[/tex]

[tex]d=5\ units[/tex]

Ver imagen calculista