Answer:
B)[tex]g(x) - h(x) = 3x^3 - 5x^2 - 15x + 15[/tex]
Step-by-step explanation:
Here, the given functions are:
[tex]g(x) = 5x^2- 10x + 9 \\h(x) = -3x^3+ 5x - 6[/tex]
Now, g(x) - h(x) is :
[tex](5x^2- 10x + 9) - ( -3x^3+ 5x - 6)\\= 5x^2- 10x + 9 + 3x^3 - 5x + 6\\= 3x ^3 + 5x ^2+ (-10 x - 5 x) + (9 + 6)\\= 3x^3 - 5x^2 - 15x + 15[/tex]
⇒[tex](5x^2- 10x + 9) - ( -3x^3+ 5x - 6) = 3x^3 - 5x^2 - 15x + 15[/tex]
B) Hence, [tex]g(x) - h(x) = 3x^3 - 5x^2 - 15x + 15[/tex]