Which simplifications of the powers of i are correct?


There may be more than one correct answer. Select all correct answers.


a. i^27=−i

b. i^28=i

c. i^14=1

d. i^8=1

e. i^5=i

Respuesta :

The correct simplifications of powers of i are:

a. i^27=−i

d. i^8=1

e. i^5=i

Step-by-step explanation:

We know that

[tex]i^2=-1\\i^3=-i\\i^4=1[/tex]

We can use the smaller powers of i to solve the larger powers.

a. i^27=−i

[tex]i^{27}\\={i^{24}}.i^3\\={i^{4*6}}.-i\\=(i^4)^6.-i\ \ \ \ As\ we\ know\ i^4=1\\=(1)^6.-i\\=1*-i\\=-i[/tex]

b. i^28=i

[tex]i^{28}\\=i^{4*7}\\=(i^4)^7\\=(1)^7\\=1[/tex]

c. i^14=1

[tex]i^{14}\\=i^{12}.i^2\\=(i^{4*3}).i^2\\=> i^2=-1\\=(i^4)^3.-1\\=(1)^3*-1\\=-1[/tex]

d. i^8=1

[tex]i^8\\=i^{4*2}\\=(i^4)^2\\=(1)^2\\=1[/tex]

e. i^5=i

[tex]i^5\\=i^{2*2*1}\\=i^2*i^2*i\\=(-1)(-1)(i)\\=i[/tex]

Hence,

The correct simplifications of powers of i are:

a. i^27=−i

d. i^8=1

e. i^5=i

Keywords: Imaginary units, Iota

Learn more about imaginary units at:

  • brainly.com/question/8806598
  • brainly.com/question/8805387

#LearnwithBrainly