In which of the tables below x and y are inversely proportional? Find the constant of variation.

(a)
x 3 4 5 5.5
y 8 6 4.8 4

(b)
x 0.1 0.5 75 100
y 300 60 0.4 0.3

Respuesta :

Answer:

In Table (b)

[tex]k=30[/tex]

Step-by-step explanation:

 By definition, Inverse proportion equations have he following  form:

[tex]y=\frac{k}{x}[/tex]

Where "k" is the Constant of proportionality.

Solving for "k":

[tex]k=yx[/tex]

Having the values of "x" and "y" given in each table, you can check if the products of "x" and "y" is equal to a constant value.

Then:

(a) For [tex]x=3;y=8[/tex]:

[tex](8)(3)=24[/tex]

For [tex]x=4;y=6[/tex]:

[tex](6)(4)=24[/tex]

For [tex]x=5;y=4.8[/tex]:

[tex](4.8)(5)=24[/tex]

For [tex]x=5.5;y=4[/tex]:

[tex](4)(5.5)=22[/tex]

Since the product of the values of "x" and "y" is not constant, they are not inversely proportional.

(b) For [tex]x=0.1;y=300[/tex]:

[tex](300)(0.1)=30[/tex]

For [tex]x=0.5;y=60[/tex]:

[tex](60)(0.5)=30[/tex]

For [tex]x=75;y=0.4[/tex]:

[tex](0.4)(75)=30[/tex]

For [tex]x=100;y=0.3[/tex]:

[tex](100)(0.3)=30[/tex]

Notice that the Constant of proportionality is:

[tex]k=30[/tex]

Therefore "x" and "y" are inversely proportional.