Answer:
Mass of the other object is 38.45 kg.
Explanation:
Given:
The gravitational force between two objects is, [tex]F=3.2\times 10^{-6}[/tex] N
Mass of one object is, [tex]m_{1}=55\ kg[/tex]
Distance between the objects is, [tex]r=2.1\times 10^{-1}\ m[/tex]
Gravitational constant is, [tex]G =6.674\times 10^{-11}\ m^3 kg^{-1}s^{-2}[/tex]
Let the mass of the other object be [tex]m_{2}\ kg[/tex]
Gravitational force is given as:
[tex]F=\frac{Gm_1m_2}{r^2}[/tex]
Plug in the given values and solve for [tex]m_2[/tex]. This gives,
[tex]3.2\times 10^{-6}=\frac{6.674\times 10^{-11}\times 55\times m_2}{(2.1\times 10^{-1})^2}\\3.2\times 10^{-6}=\frac{6.674\times 10^{-11}\times 55\times m_2}{0.0441}\\3.2\times 10^{-6}=8.3236\times 10^{-8}m_2\\m_2=\frac{3.2\times 10^{-6}}{8.3236\times 10^{-8}}= 38.45\ kg[/tex]
Therefore, the mass of the other object is 38.45 kg.