contestada

find the area under the curve y = tsin(t-1), x = ln(t) from x = 0 to x = ln(pi + 1)

Respuesta :

Answer:

The area under the curve y = tsin(t-1), x = ㏑(t) from x = 0 to x = ㏑([tex]\pi[/tex] + 1) is 2 square units

Step-by-step explanation:

y = tsin(t-1)

x = ㏑(t)

⇒dx = [tex]\frac{1}{t}[/tex]dt

x = 0 ⇒ t = 1 and x = ㏑([tex]\pi[/tex]+1) ⇒ t = [tex]\pi[/tex]+1

Area under the curve from x = 0 to x = ㏑([tex]\pi[/tex]+1) or from t = 1 to t = [tex]\pi[/tex]+1 is [tex]\int\limits {y} \, dx[/tex] with limits : t from 1 to [tex]\pi[/tex]+1

                       = [tex]\int\limits {tsin(t-1)} \, \frac{1}{t} dt[/tex]

                       = [tex]\int\limit {sin(t-1)} \, dt[/tex]

Using the substitution t = k + 1 :

dt = dk

when t = 1, k = 0 and when t = [tex]\pi[/tex]+1, k = [tex]\pi[/tex]

The integral is now modified as :

[tex]\int\limits^\pi _0 {sin(k)} \, dk[/tex]

                 = -(cos([tex]\pi[/tex])-cos(0))

                 = -(-1-1)

                 = -(-2)

                 = 2 square units.