Respuesta :
Answer:
D) The coordinates of [tex](x,y) = (2, -8)[/tex]
Step-by-step explanation:
The coordinates of the points are given as A(-4, -2) and B(4,-10).
The ratio is 3 : 1
Le t us assume the point is M (x,y).
⇒ AM : MB = 3 : 1
Now, Using SECTION FORMULA:
[tex](x,y) = (\frac{m1 x2 + m2 x1}{m1 + m2} ,\frac{m1 y2 + m2 y1}{m1 + m2})[/tex]
Using m1 : m2 = 3 : 1
Here, we get
[tex](x,y) = (\frac{3(4) +1(-4)}{1 +3} ,\frac{3(-10) + 1(-2)}{1 + 3})\\\implies (x,y) = (\frac{12-4}{4} ,\frac{-30-2}{4} )\\or, (x,y) = (\frac{8}{4} ,\frac{-32}{4} )[/tex]
Hence, the coordinates of [tex](x,y) = (2, -8 )[/tex]
Answer:
(2, 4)
Step-by-step explanation:
The sum of the ratio numbers (3+1) is 4, so M is [[3/4] of the distance from A to B. The coordinates of M are (xm, ym), where xm = =-4 + 3 /4 (4 - -(4)) and ym = -2 + 3 /4 (-10 - (-2)).