The function Q(t)=Qoe^kt May be used to model radioactive decay. Q representing the quantity remaining after t years; k is the decay constant. What is the decay constant for plutonium -240 if it's half-life is 6,300 years?

Respuesta :

Answer:

A. -[ln(0.5)/6,300]

Step-by-step explanation:

Done on apex, it is correct.

Answer : The value of decay constant is, [tex]1.1\times 10^{-4}\text{ years}^{-1}[/tex]

Explanation :

Half-life of plutonium-240 = 6300 years

The expression used to calculate the rate constant is:

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

where,

k = decay constant

[tex]t_{1/2}[/tex] = half-life

Now put all the given values in the above formula, we get:

[tex]k=\frac{0.693}{6300\text{ years}}[/tex]

[tex]k=1.1\times 10^{-4}\text{ years}^{-1}[/tex]

Therefore, the value of decay constant is, [tex]1.1\times 10^{-4}\text{ years}^{-1}[/tex]