One endpoint of a line segment has coordinates represented by (x+4,12y) . The midpoint of the line segment is (3,−2) .

How are the coordinates of the other endpoint expressed in terms of x and y?


(2−x,−4−12y)

(10−x,−12y)

(x+2,2−12y)

(2x−2,12y−2)

Respuesta :

Answer:

[tex](2-x,-4-12y)[/tex] coordinates of other end points.

Step-by-step explanation:

Given:

Let A be the end point whose coordinates which are given and B the other end point which  co ordinates needs to be find.

Coordinates of point A [tex](x_1,y_1)[/tex]= [tex](x+4,12y)[/tex]

Coordinates of point A [tex](x_2,y_2[/tex]= need to be find

Midpoint of Line segment AB = (3,-2)

Midpoint of Line segment = [tex](\frac{x_1+x_2}{2})(\frac{y_1+y_2}{2})[/tex]

Solving for x we get ,

[tex]\frac{x+4+x_2}{2}= 3\\\\x+4+x_2=6\\x_2=6-4-x\\x_2=2-x[/tex]

Solving for y we get ,

[tex]\frac{12y+y_2}{2}= -2\\\\12y+y_2=-4\\y_2=-4-12y[/tex]

Hence [tex](2-x,-4-12y)[/tex] coordinates of other end points.