Answer:
[tex](2-x,-4-12y)[/tex] coordinates of other end points.
Step-by-step explanation:
Given:
Let A be the end point whose coordinates which are given and B the other end point which  co ordinates needs to be find.
Coordinates of point A [tex](x_1,y_1)[/tex]= [tex](x+4,12y)[/tex]
Coordinates of point A [tex](x_2,y_2[/tex]= need to be find
Midpoint of Line segment AB = (3,-2)
Midpoint of Line segment = [tex](\frac{x_1+x_2}{2})(\frac{y_1+y_2}{2})[/tex]
Solving for x we get ,
[tex]\frac{x+4+x_2}{2}= 3\\\\x+4+x_2=6\\x_2=6-4-x\\x_2=2-x[/tex]
Solving for y we get ,
[tex]\frac{12y+y_2}{2}= -2\\\\12y+y_2=-4\\y_2=-4-12y[/tex]
Hence [tex](2-x,-4-12y)[/tex] coordinates of other end points.