Graph the line with slope -2/3 passing through the point (-2,2).

Answer:
The graph is shown below.
Step-by-step explanation:
Given:
Slope of the line is, [tex]m=-\frac{2}{3}[/tex]
A point on the line is (-2,2).
Let us find the equation of a line using the point-slope form:
[tex]y-y_1=m(x-x_1)[/tex]
Here, [tex]x_1=-2,y_1=2,m=-\frac{2}{3}[/tex]
[tex]y-2=-\frac{2}{3}(x-(-2))\\y-2=-\frac{2}{3}(x+2)\\3(y-2)=-2(x+2)\\3y-6=-2x-4\\2x+3y=-4+6\\2x+3y=2[/tex]
Let [tex]x=1[/tex], then
[tex]2(1)+3y=2\\2+3y=2\\3y=0\\y=0[/tex]. So, a point is (1,0).
Another point is given as (-2,2)
Now, draw a line passing through these two points. This is the graph of the required line.