Respuesta :
Answer:
a) A =0.021525m
b) [tex]\phi=0.37869rad[/tex]
c) [tex]v_{max}=5.4098\frac{m}{s}[/tex]
d)[tex]y(x,t)=(0.021525m)cos(\frac{8\pi}{3}x+80\pi t+0.37869)[/tex]
Explanation:
1) Notation
A= Amplitude
v= velocity
[tex]\lambda[/tex]= wavelength
k= wave number
[tex]\omega[/tex]= angular frequency
f= frequency
2) Part a and b
The equation of movement for a transverse sinusoidal wave is gyben by (1)
[tex]y(t)=Acos(kx+ \omega t +\phi)[/tex] Â (1)
At x=0 ,t=0 we have that:
[tex]0.02=Acos(\phi)[/tex]
The velocity would be the derivate of the position, so taking the derivate of (1) respect to t we got (2)
[tex]v(t)=-\omega Asin(kx+ \omega t+\phi)[/tex] Â (2)
And replacing the conditions at x=0, t=0 we got
[tex]-2\frac{m}{s}=-\omega Asin(\phi)[/tex] Â
Now we can find the angular frequency with equation (3)
[tex]\omega =\frac{2\pi}{T}[/tex] Â (3)
Replacing the values obtained we got:
[tex]\omega =\frac{2\pi}{0.025s}=80\pi \frac{rad}{s}[/tex] Â
From equation (1) we have:
[tex]Acos(\phi)=0.02[/tex] Â (a)
[tex]-2=-80\pi Asin(\phi)[/tex] Â (b)
So from condition (b) we have:
[tex]Asin(\phi)=\frac{1}{40\pi}[/tex] Â (c)
If we divide condition (c) by condition (a) we got:
[tex]\frac{Asin(\phi)}{Acos(\phi)}=tan(\phi)=\frac{1}{0.02x40\pi}=\frac{1}{0.8\pi}=0.39789[/tex]
If we solve for [tex]\phi[/tex] we got:
[tex]\phi =tan^{-1}(0.39789)=0.37869[/tex]
And now since we have [tex]\phi[/tex] we can find A from equation (a)
[tex]Acos(0.37869)=0.02[/tex]
So then Solving for A we got [tex]A=\frac{0.02}{cos(0.37869)}=0.021525[/tex]
3) Part c
From equation (2) we can see that the maximum speed occurs when [tex]sin(\omega t+\phi)=1[/tex], so on this case we have:
[tex]v_{max}=\omega A=80\pi \frac{rad}{s}x0.021525m=5.4098\frac{m}{s}[/tex]
4) Part d
On this case we need an equation like (1), and we have everything except the wave number, and we can obtain this from the following expression:
[tex]v=\lambda f=\frac{2\pi}{k}\frac{\omega}{2\pi}=\frac{\omega}{k}[/tex] Â (4)
And solving for k from equation (4) we got
[tex]k=\frac{\omega}{v}=\frac{80\pi \frac{rad}{s}}{30\frac{m}{s}}=\frac{8\pi}{3}m^{-1}}[/tex]
And with the k number we have everythin in order to create the wave function, given by:
[tex]y(x,t)=(0.021525m)cos(\frac{8\pi}{3}x+80\pi t+0.37869)[/tex]