Respuesta :

Answer:

The perimeter of the figure is,  [tex]68 \dfrac{1}{2}[/tex] yd

Step-by-step explanation:

The perimeter of the figure is,

[tex](10\dfrac{1}{3} + 24\dfrac{1}{4} + 15\dfrac{2}{3} + 18\dfrac{1}{4})[/tex] yd

= [tex]((10+24+15+18)+ (\frac {1}{3} + \frac {2}{3} + \frac {1}{4} + \frac {1}{4}))[/tex] yd

=[tex](67 + 1 + \frac{1}{2})[/tex] yd

=[tex]68 \dfrac{1}{2}[/tex] yd

We know that if there is a polygon with side lengths [tex]a_{i}[/tex] unit ∀

i = 1(1}n where n ∈ N - {1, 2}

then, it's perimeter is given by,

[tex]\sum_{i=1}^{n}a_{i}[/tex]  unit