Telephone calls arrive at a doctor’s office according to a Poisson process on the average of two every 3 minutes. Let X denote the waiting time until the first call that arrives after 10 a.m.
(a) What is the pdf of X?
(b) Find P(X > 2).

Respuesta :

Answer:

a) [tex]f(x)=\frac{2}{3}e^{-\frac{2}{3}x}[/tex] when [tex]x\geq 0[/tex]

[tex]f(x)=0[/tex] otherwise

b) [tex]P(X<2)=0.2636[/tex]

Step-by-step explanation:

First of all we have a Poisson process with a mean equal to :

μ = λ = [tex]\frac{2}{3}[/tex] (Two phone calls every 3 minutes)

Let's define the random variable X.

X : ''The waiting time until the first call that arrives after 10 a.m.''

a) The waiting time between successes of a Poisson process is modeled with a exponential distribution :

X ~ ε (λ)    Where λ is the mean of the Poisson process

The exponential distribution follows the next probability density function :

I replace λ = a for the equation.

[tex]f(x)=a(e)^{-ax}[/tex]

With

[tex]x\geq 0[/tex]

and

[tex]a>0[/tex]

[tex]f(x)=0[/tex] Otherwise

In this exercise λ= a = [tex]\frac{2}{3}[/tex] ⇒

[tex]f(x)=(\frac{2}{3})(e)^{-\frac{2}{3}x}[/tex]

[tex]x\geq 0[/tex]

[tex]f(x)=0[/tex] Otherwise

That's incise a)

For b) [tex]P(X>2)[/tex] We must integrate between 2 and ∞ to obtain the probability or either use the cumulative probability function of the exponential

[tex]P(X\leq x)=0[/tex]

when [tex]x<0[/tex]

and

[tex]P(X\leq x)=1-e^{-ax}[/tex] when [tex]x\geq 0[/tex]

For this exercise

[tex]P(X\leq x)=1-e^{-\frac{2}{3}x}[/tex]

Therefore

[tex]P(X>2)=1-P(X\leq 2)[/tex]

[tex]P(X>2)=1-(1-e^{-\frac{2}{3}.2})=e^{-\frac{4}{3}}=0.2636[/tex]