Answer:
53.33 meters
Step-by-step explanation:
Let AB represents the height of the cliff,
( where, A is top and B is bottom ),
Also, C and D represents the shadow of the cloud and cloud in the sky respectively,
Suppose E is a point in the segment CD,
Such that,
AB = DE = 40 meters,
According to the question,
[tex]m\angle CAE = 30^{\circ}[/tex]
[tex]m\angle EAD = 60^{\circ}[/tex]
Since,
[tex]\tan =\frac{\text{Perpendicular}}{\text{Base}}[/tex]
[tex]\implies \tan 60^{\circ}=\frac{DE}{AE}[/tex]
[tex]\sqrt{3}=\frac{40}{AE}[/tex]
[tex]\implies AE = \frac{40}{\sqrt{3}}[/tex]
Now,
[tex]\tan 30^{\circ}=\frac{CE}{AE}[/tex]
[tex]\frac{1}{\sqrt{3}}=\frac{\sqrt{3}CE}{40}[/tex]
[tex]\implies CE = \frac{40}{3}[/tex]
Hence,
The height of the cloud above the lake = CE + ED
[tex]=\frac{40}{3}+40=13.33+40 = 53.33\text{ meters}[/tex]