A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.35 per square foot, the material for the sides costs $0.10 per square foot, and the material for the top costs $0.15 per square foot, determine the dimensions of the box that can be constructed at minimum cost.
A. length ft
B. width ft
C. height ft.

Respuesta :

Answer:

Length = 2 ft

Width = 2 ft

Height = 5 ft

Step-by-step explanation:

Let the square base of the box has one side = x ft

Therefore, area of the base = x² ft²

Cost of the material to prepare the base = $0.35 per square feet

Cost to prepare the base = $0.35x²

Let the height of the box = y ft

Then the volume of the box = x²y ft³ = 20

[tex]y=\frac{20}{x^{3} }[/tex] -----(1)

Cost of the material for the sides = $0.10 per square feet

Area of the sides = 4xy

Cost to prepare the sides of the box = $0.10 × 4xy

                                                             = $0.40xy

Cost of the material to prepare the top = $0.15 per square feet

Cost to prepare the top = $0.15x²

Total cost of the box = 0.35x² + 0.40xy + 0.15x²

From equation (1),

Total cost [tex]C=0.35x^{2}+(0.40x)\times \frac{20}{x^{2} }+0.15x^{2}[/tex]

[tex]C=0.35x^{2}+\frac{8}{x}+0.15x^{2}[/tex]

[tex]C=0.5x^{2}+\frac{8}{x}[/tex]

Now we take the derivative of C with respect to x and equate it to zero,

[tex]C'=0.5(2x)-\frac{8}{x^{2}}[/tex] = 0

[tex]x-\frac{8}{x^{2}}=0[/tex]

[tex]x=\frac{8}{x^{2} }[/tex]

[tex]x^{3}=8[/tex]

x = 2 ft.

From equation (1),

[tex](2)^{2}y=20[/tex]

4y = 20

y = 5 ft

Therefore, Length and width of the box should be 2 ft and height of the box should be 5 ft for the minimum cost to construct the rectangular box.

The volume of a box is the amount of space in it.

The dimensions that minimize cost are:

[tex]\mathbf{Length = 2ft}[/tex]

[tex]\mathbf{Width = 2ft}[/tex]

[tex]\mathbf{Height= 5ft}[/tex]

The volume of the box is:

[tex]\mathbf{V = 20}[/tex]

Assume the dimension of the base is x, and the height is h.

The volume of the box will be:

[tex]\mathbf{V = x^2h}[/tex]

So, we have:

[tex]\mathbf{x^2h = 20}[/tex]

The area of the sides is:

[tex]\mathbf{A_1 = 4xh}[/tex]

The cost of the side material is 0.10.

So, the cost is:

[tex]\mathbf{C_1 = 0.10 \times 4xh}[/tex]

[tex]\mathbf{C_1 = 0.4xh}[/tex]

The area of the base is:

[tex]\mathbf{A_2 = x^2}[/tex]

The cost of the base material is 0.35.

So, the cost is:

[tex]\mathbf{C_2 = 0.35x^2}[/tex]

The area of the top is:

[tex]\mathbf{A_3 = x^2}[/tex]

The cost of the top material is 0.15.

So, the cost is:

[tex]\mathbf{C_3 = 0.15x^2}[/tex]

So, the total cost is:

[tex]\mathbf{C = 0.4xh + 0.35x^2 + 0.15x^2}[/tex]

[tex]\mathbf{C = 0.4xh + 0.5x^2}[/tex]

Recall that: [tex]\mathbf{x^2h = 20}[/tex]

Make h the subject

[tex]\mathbf{h = \frac{20}{x^2}}[/tex]

Substitute [tex]\mathbf{h = \frac{20}{x^2}}[/tex] in [tex]\mathbf{C = 0.4xh + 0.5x^2}[/tex]

[tex]\mathbf{C = 0.4x \times \frac{20}{x^2} + 0.5x^2}[/tex]

[tex]\mathbf{C = \frac{8}{x} + 0.5x^2}[/tex]

Differentiate

[tex]\mathbf{C' = -\frac{8}{x^2} + x}[/tex]

Set to 0

[tex]\mathbf{-\frac{8}{x^2} + x = 0}[/tex]

Rewrite as:

[tex]\mathbf{x = \frac{8}{x^2}}[/tex]

Multiply both sides by x^2

[tex]\mathbf{x^3 = 8}[/tex]

Take cube roots of both sides

[tex]\mathbf{x = 2}[/tex]

Recall that:

[tex]\mathbf{h = \frac{20}{x^2}}[/tex]

So, we have:

[tex]\mathbf{h = \frac{20}{2^2}}[/tex]

[tex]\mathbf{h = 5}[/tex]

Hence, the dimensions that minimize cost are:

[tex]\mathbf{Length = 2ft}[/tex]

[tex]\mathbf{Width = 2ft}[/tex]

[tex]\mathbf{Height= 5ft}[/tex]

Read more about volumes at:

https://brainly.com/question/13101997